DeskRex.ai

open α

テーマ

データベース

自動化

発見

サインイン

リサーチの結果の保存、レポートの作成、共有が行えます。

サインイン

レポートの一覧に戻る

LLMエージェントの有名な論文やOSSについての調査

🗓 Created on 4/4/2024

  • 📜要約
  • 📊ビジュアライズ
  • 🖼関連する画像
  • 🔍詳細
    • 🏷導入: LLMエージェントとは
    • 🏷GPTや他のLLMに関する論文の重要性
    • 🏷オープンソースツールとアプリケーションの役割
    • 🏷最新の研究動向と実装事例
    • 🏷LLMエージェントの応用分野
    • 🏷セキュリティとプライバシーの考慮事項
    • 🏷将来の展望と課題
  • 🖍考察
  • 📚参考文献
    • 📖利用された参考文献
    • 📖未使用の参考文献
    • 📊ドメイン統計

📜 要約

主題と目的の要約

今回の調査では、「LLMエージェントの有名な論文やOSSとアーキテクチャについて」に焦点を当てました。主題と目的は、LLMエージェントに関連する重要な論文やオープンソースソフトウェア(OSS)のアーキテクチャについて、包括的な調査を行い、その重要性や応用について客観的に分析することです。

主要な内容と発見

調査の中で主要な内容と重要な発見は以下の通りです:
  • GPT-4や他のLLMに関する論文の初期実験やAIの危険性、影響、新技術の応用に関する研究が紹介されている。
  • LLMエージェントのアーキテクチャには、計画モジュール、メモリモジュール、ツールの統合が含まれており、機能の拡張が図られている。
  • オープンソースツールやアプリケーションの役割は、LLMやLLMエージェントを使用してタスクやコミュニケーションを改善することを目指している。

結果と結論のまとめ

得られた主要な結果と結論は以下の通りです:
  • RAISEやAIOSなどのアーキテクチャは、LLMエージェントの性能や効率性を向上させることが示されており、AI分野に貢献している。
  • LLMアプリケーションのセキュリティとプライバシーに関する考慮事項は、OWASPの脆弱性やプライバシーリスクに焦点を当てている。
  • AIエージェントは、自律的な意思決定や高度な自動化レベルへの移行を予示し、ワークフロー全体の再設計や自動化を可能にする可能性がある。

🔍 詳細

🏷導入: LLMエージェントとは

画像 1

LLMエージェントの概要

LLMエージェントは、大規模な言語モデル(LLM)を使用して会話を続けたり、タスクを実行したりするAIシステムであり、プロンプトやメモリを活用して機能します。エージェントの構成要素は、LLM、プロンプト、メモリであり、知識の統合やツールの統合により機能を拡張します。

LLMエージェントの開発と研究

LLMエージェントの開発には、データエンジニアリング、データウェアハウスの構築、LLM-Agentの開発ステージ、最終調整の段階が含まれます。プロンプトやメモリの活用、知識の統合、ツールの統合は、エージェントの能力を向上させる重要な要素です。さらに、LLMエージェントの研究論文やOSSの活用も重要であり、最新の技術動向に対応するために積極的な情報収集が必要です。

LLMエージェントの事例と研究論文

  • Interactive Natural Language Processing
    • 2023年5月に発表された論文
    • 著者: Zekun Wang, Ge Zhang, Kexin Yang 他
    • 論文リンク
  • 大規模言語モデルに基づく自律エージェントに関する調査
    • 2023年8月に発表された論文
    • 著者: Lei Wang, Chen Ma, Xueyang Feng 他
    • 論文リンク
  • 大規模言語モデルベースのエージェントの台頭と潜在能力に関する調査
    • 2023年9月に発表された論文
    • 著者: Zhiheng Xi, Wenxiang Chen, Xin Guo 他
    • 論文リンク
  • LLMが魔法使いなら、コードは杖: コードが大規模言語モデルを知的エージェントとして活用する方法に関する調査
    • 2024年1月に発表された論文
    • 著者: Ke Yang, Jiateng Liu, John Wu 他
    • 論文リンク
  • エージェントAI: マルチモーダルインタラクションの地平を調査
    • 2024年1月に発表された論文
    • 著者: Zane Durante, Qiuyuan Huang, Naoki Wake 他
    • 論文リンク
copy url
source logoionio.ai
Radford et al. (2019)
[Brown et al.2020
Wei et al
MIND2Web,
"Gorilla"
Get on a free call
copy url
source logomedium.com
Miro
https://youtube.com/shorts/0DJqX_Ihwoo?feature=share
copy url
source logonvidia.com
large language model
Retrieval-Augmented Generation (RAG)
Building Your First Agent Application
AutoGPT
BabyAGI
Q3, 2023
Q1 2024
LLM-Powered Agents: Building Your First Agent Application
Generative Agents
ChatDev
recommendation systems
Building Your First Agent Application
Build an LLM-Powered API Agent for Task Execution
Build an LLM-Powered Data Agent for Data Analysis
copy url
source logogithub.com
2024-03]**We release a new paper: " [KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents
2023-06]**We create this repository to maintain a paper list on *Multi-agents*. [LLM Agents Papers
🔔 News
📜Content
🌄 Papers
🧰 Resources
🎉 Contribution
[abs]
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[code
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[paper
[abs
[abs
[paper
[abs
[abs
[code
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
[abs
CAMEL
GPTeam
AgentVerse
MetaGPT
Langroid
SocraticAI
AutoGen
Agents
AutoAgents
、
GPT Engineer
Auto-GPT
LangChain
CAMEL
GPTeam
Transformer Agents
AgentVerse
AutoAgents
GPT Engineer
MetaGPT
WorkGPT
AutoChain
Langroid
SocraticAI
WebArena
GPT Researcher
BMTools
ToolBench
AgentGPT
xlang
Agently
Lagent
ToolEmu
https://github.com/zjunlp/LLMAgentPapers/graphs/contributors

🏷GPTや他のLLMに関する論文の重要性

画像 1

GPTや他のLLMに関する論文の重要性の要約

「GPTや他のLLMに関する論文の重要性」というセクションでは、GPT-4の初期実験やAIの危険性、影響、新しい技術の応用、AIの限界に関する研究が紹介されています。これらの論文は、GPT/LLMの機能、限界、および使用に関する重要な洞察を提供しています。

考察

これらの論文は、GPTや他のLLMに関する研究の多様な側面を網羅しており、AIの将来における重要な課題や可能性について深く考察しています。特に、AIの危険性や限界に関する研究は、技術の進化と社会への影響を考える上で重要な示唆を提供しています。これらの論文を通じて、AI技術の発展に伴う倫理的な問題や課題について議論を深めることができます。

大規模言語モデルベースの自律エージェントに関する調査

「大規模言語モデルベースの自律エージェントに関する調査」では、LLMsの台頭により、人間レベルの知能を持つ可能性が示され、LLMベースの自律エージェントに関する研究が急増しています。エージェントの構築、応用、評価の3つの側面に焦点を当て、LLMsをより効果的に活用するためのアーキテクチャの設計やエージェントの能力向上方法について探求しています。
Figure 2
copy url
source logogithub.com
LWM
Sora
Gemma
minbpe
Awesome-LLM
Awesome-LLM-hallucination
awesome-hallucination-detection
LLMsPracticalGuide
Awesome ChatGPT Prompts
awesome-chatgpt-prompts-zh
Awesome ChatGPT
Chain-of-Thoughts Papers
Awesome Deliberative Prompting
Instruction-Tuning-Papers
LLM Reading List
Reasoning using Language Models
Chain-of-Thought Hub
Awesome GPT
Awesome GPT-3
OpenAI GPT-3 API
Awesome LLM Human Preference Datasets
RWKV-howto
ModelEditingPapers
Awesome LLM Security
Awesome-Align-LLM-Human
Awesome-Code-LLM
Awesome-LLM-Compression
Awesome-LLM-Systems
awesome-llm-webapps
awesome-japanese-llm
Awesome-LLM-Healthcare
Awesome-LLM-Inference
Awesome-LLM-3D
LLMDatahub
Awesome-Chinese-LLM
llm-course
OpenCompass 2.0 LLM Leaderboard]- OpenCompass is an LLM evaluation platform, supporting a wide range of models (InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets. [Gemma
Mistral
Mixtral 8x7B
LLaMA
LLaMA-2
LLaMA.cpp
Lit-LLaMA
Alpaca
Alpaca.cpp
Alpaca-LoRA
Flan-Alpaca
Baize
LoRA
Cabrita
Vicuna
Llama-X
Chinese-Vicuna
GPTQ-for-LLaMA
LLaMA
GPTQ
GPT4All
Koala
BELLE
StackLLaMA
RedPajama
Chimera
WizardLM|WizardCoder
CaMA
Orca
BayLing
UltraLM
Guanaco
ChiMed-GPT
RAFT
paper
Gorilla LLM
LLaVa
BLOOM
BLOOM-LoRA
BLOOMZ&mT0
Phoenix
Deepseek
Yi
T5
T0
OPT
UL2
GLM
ChatGLM-6B
General Language Model (GLM)
ChatGLM2-6B
ChatGLM3-6B
ChatGLM3-6B-32k
ChatGLM3-6B-128k
RWKV
ChatRWKV
Trending Demo
StableLM
YaLM
GPT-Neo
GPT3
mesh-tensorflow
GPT-J
The Pile
Dolly
Pythia
Dolly 2.0
OpenFlamingo
Cerebras-GPT
GALACTICA
GALPACA
Palmyra
Camel
h2oGPT
PanGu-α
MOSS
Open-Assistant
HuggingChat
StarCoder
MPT-7B
Falcon
XGen
Baichuan
Aquila
phi-1
phi-1.5
phi-2
InternLM / 书生·浦语
Homepage
ModelScope
BlueLM-7B
Homepage
ModelScope
MoE-16B-base
Chat with DeepSeek (Beta)
Qwen series
7B
72B
Chat Demo
XVERSE series
7B
13B
65B
Skywork series
DeepSpeed
Megatron-DeepSpeed
FairScale
Megatron-LM
Colossal-AI
BMTrain
Mesh Tensorflow
maxtext
Alpa
GPT-NeoX
lm-evaluation-harness
lighteval
OLMO-eval
instruct-eval
Langfuse
FastChat
MindSQL
SkyPilot
vLLM
Text Generation Inference
HuggingFace
Haystack
Sidekick
LangChain
Floom
Swiss Army Llama
LiteChain
magentic
wechat-chatgpt
promptfoo
Agenta
Serge
Langroid
Embedchain
CometLLM
IntelliServer
OpenLLM
BentoML
DeepSpeed-Mii
Text-Embeddings-Inference
Infinity
TensorRT-LLM
FasterTransformer
Flash-Attention
Langchain-Chatchat
Search with Lepton
LeptonAI
Robocorp
LMDeploy
YiVal
Guidance
LangChain
FLAML (A Fast Library for Automated Machine Learning & Tuning)
Chainlit
Guardrails.ai
Semantic Kernel
Prompttools
Outlines
Promptify
Scale Spellbook
PromptPerfect
Weights & Biases
OpenAI Evals
LlamaIndex
Arthur Shield
LMQL
ModelFusion
Flappy
GPTRouter
QAnything
BCEmbedding
blog
Mamba: The Easy Way
video
video
Youtube
Slides
Youtube
Slides
Bilibili
Youtube
Link
Link
Link
Video
Code
Link
Slides
Video
Link
Link
Link
Link
Link
Link
Link
Link
Link
Video
code
Link
Link
Link
Link
Link
Homepage
Homepage
Homepage
主页
Slides
Homepage
Homepage
Video
Bilibili
Youtube
Youtube
Bilibili
Bilibili
Youtube
Bilibili
Youtube
Homepage
Homepage
Homepage
Homepage
Homepage
Homepage
Homepage
Homepage
Homepage
Homepage
Homepage
Homepage
Homepage
Homepage
Homepage
Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT, and other LLMs
GitHub repository
Build a Large Language Model (From Scratch)
A Stage Review of Instruction Tuning
2023-06-29] [Yao Fu] [LLM Powered Autonomous Agents
2023-06-23] [Lilian] [Why you should work on AI AGENTS!
2023-06-22] [Andrej Karpathy] [Google "We Have No Moat, And Neither Does OpenAI"
2023-05-05] [AI competition statement
2023-04-20] [petergabriel] [我的大模型世界观
2023-04-23] [陆奇] [Prompt Engineering
2023-03-15] [Lilian] [Noam Chomsky: The False Promise of ChatGPT
2023-03-08][Noam Chomsky] [Is ChatGPT 175 Billion Parameters? Technical Analysis
2023-03-04][Owen] [Towards ChatGPT and Beyond
2023-02-20][知乎][欧泽彬] [追赶ChatGPT的难点与平替
2023-02-19][李rumor] [对话旷视研究院张祥雨|ChatGPT的科研价值可能更大
2023-02-16][知乎][旷视科技] [关于ChatGPT八个技术问题的猜想
2023-02-15][知乎][张家俊] [ChatGPT发展历程、原理、技术架构详解和产业未来
2023-02-15][知乎][陈巍谈芯] [对ChatGPT的二十点看法
2023-02-13][知乎][熊德意] [ChatGPT-所见、所闻、所感
2023-02-11][知乎][刘聪NLP] [The Next Generation Of Large Language Models
2023-02-07][Forbes] [Large Language Model Training in 2023
2023-02-03][Cem Dilmegani] [What Are Large Language Models Used For?
2023-01-26][NVIDIA] [Large Language Models: A New Moore's Law
2021-10-26][Huggingface] [Arize-Phoenix
Emergent Mind
ShareGPT
Major LLMs + Data Availability
500+ Best AI Tools
Cohere Summarize Beta
chatgpt-wrapper
Open-evals
Evals
Cursor
AutoGPT
OpenAGI
HuggingGPT
EasyEdit
chatgpt-shroud
MTEB
xFormer
copy url
source logoarxiv.org
copy url
source logogithub.com
A Survey on Large Language Model-Based Game Agents
Advancing LLM Reasoning Generalists with Preference Trees
LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models
Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns
Gecko: Versatile Text Embeddings Distilled from Large Language Models
ITCMA: A Generative Agent Based on a Computational Consciousness Structure
Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning
MATEval: A Multi-Agent Discussion Framework for Advancing Open-Ended Text Evaluation
Change-Agent: Towards Interactive Comprehensive Change Interpretation and Analysis from Change Detection and Change Captioning
Long-form factuality in large language models
Large Language Models Need Consultants for Reasoning: Becoming an Expert in a Complex Human System Through Behavior Simulation
A Path Towards Legal Autonomy: An interoperable and explainable approach to extracting, transforming, loading and computing legal information using large language models, expert systems and Bayesian networks
A Study of Three Influencer Archetypes for the Control of Opinion Spread in Time-Varying Social Networks
MAGIS: LLM-Based Multi-Agent Framework for GitHub Issue Resolution
Depending on yourself when you should: Mentoring LLM with RL agents to become the master in cybersecurity games
AIOS: LLM Agent Operating System
RepairAgent: An Autonomous, LLM-Based Agent for Program Repair
CYGENT: A cybersecurity conversational agent with log summarization powered by GPT-3
TwoStep: Multi-agent Task Planning using Classical Planners and Large Language Models
When LLM-based Code Generation Meets the Software Development Process
Can large language models explore in-context?
CoLLEGe: Concept Embedding Generation for Large Language Models
LLM-Driven Agents for Influencer Selection in Digital Advertising Campaigns
Language Models in Dialogue: Conversational Maxims for Human-AI Interactions
CACA Agent: Capability Collaboration based AI Agent
ReAct Meets ActRe: Autonomous Annotations of Agent Trajectories for Contrastive Self-Training
ERD: A Framework for Improving LLM Reasoning for Cognitive Distortion Classification
PeerGPT: Probing the Roles of LLM-based Peer Agents as Team Moderators and Participants in Children's Collaborative Learning
RoleInteract: Evaluating the Social Interaction of Role-Playing Agents
Polaris: A Safety-focused LLM Constellation Architecture for Healthcare
Large Language Models meet Network Slicing Management and Orchestration
Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal
Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models
HYDRA: A Hyper Agent for Dynamic Compositional Visual Reasoning
Characteristic AI Agents via Large Language Models
Embodied LLM Agents Learn to Cooperate in Organized Teams
Contextual Moral Value Alignment Through Context-Based Aggregation
Multimodal Human-Autonomous Agents Interaction Using Pre-Trained Language and Visual Foundation Models
EnvGen: Generating and Adapting Environments via LLMs for Training Embodied Agents
From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models
https://arxiv.org/abs/2403.11835](Agent3D-Zero
DiPaCo: Distributed Path Composition
PERL: Parameter Efficient Reinforcement Learning from Human Feedback
AUTONODE: A Neuro-Graphic Self-Learnable Engine for Cognitive GUI Automation
Enhancing Human-Centered Dynamic Scene Understanding via Multiple LLMs Collaborated Reasoning
Can a GPT4-Powered AI Agent Be a Good Enough Performance Attribution Analyst?
Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking
Enhancing Trust in Autonomous Agents: An Architecture for Accountability and Explainability through Blockchain and Large Language Models
VisionGPT-3D: A Generalized Multimodal Agent for Enhanced 3D Vision Understanding
From Skepticism to Acceptance: Simulating the Attitude Dynamics Toward Fake News
LLM-based agents for automating the enhancement of user story quality: An early report
USimAgent: Large Language Models for Simulating Search Users
SOTOPIA-π: Interactive Learning of Socially Intelligent Language Agents
AutoGuide: Automated Generation and Selection of State-Aware Guidelines for Large Language Model Agents
TINA: Think, Interaction, and Action Framework for Zero-Shot Vision Language Navigation
System for systematic literature review using multiple AI agents: Concept and an empirical evaluation
Hierarchical Auto-Organizing System for Open-Ended Multi-Agent Navigation
Cultural evolution in populations of Large Language Models
CleanAgent: Automating Data Standardization with LLM-based Agents
NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning Disentangled Reasoning
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Transforming Competition into Collaboration: The Revolutionary Role of Multi-Agent Systems and Language Models in Modern Organizations
DexCap: Scalable and Portable Mocap Data Collection System for Dexterous Manipulation
AesopAgent: Agent-driven Evolutionary System on Story-to-Video Production
RecAI: Leveraging Large Language Models for Next-Generation Recommender Systems
DriveDreamer-2: LLM-Enhanced World Models for Diverse Driving Video Generation
Academically intelligent LLMs are not necessarily socially intelligent
TRAD: Enhancing LLM Agents with Step-Wise Thought Retrieval and Aligned Decision
ArgMed-Agents: Explainable Clinical Decision Reasoning with Large Language Models via Argumentation Schemes
Reframe Anything: LLM Agent for Open World Video Reframing
Cached Model-as-a-Resource: Provisioning Large Language Model Agents for Edge Intelligence in Space-air-ground Integrated Networks
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Horizon Generation
FLAP: Flow Adhering Planning with Constrained Decoding in LLMs
Acceleron: A Tool to Accelerate Research Ideation
PPTC-R benchmark: Towards Evaluating the Robustness of Large Language Models for PowerPoint Task Completion
SheetAgent: A Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models
Exploring LLM-based Agents for Root Cause Analysis
Language Guided Exploration for RL Agents in Text Environments
KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents
Learning to Use Tools via Cooperative and Interactive Agents
OPEx: A Component-Wise Analysis of LLM-Centric Agents in Embodied Instruction Following
Android in the Zoo: Chain-of-Action-Thought for GUI Agents
InjecAgent: Benchmarking Indirect Prompt Injections in Tool-Integrated Large Language Model Agents
Entropy-Regularized Token-Level Policy Optimization for Large Language Models
ChatCite: LLM Agent with Human Workflow Guidance for Comparative Literature Summary
Trial and Error: Exploration-Based Trajectory Optimization for LLM Agents
SceneCraft: An LLM Agent for Synthesizing 3D Scene as Blender Code
Playing NetHack with LLMs: Potential & Limitations as Zero-Shot Agents
Human Simulacra: A Step toward the Personification of Large Language Models
Prospect Personalized Recommendation on Large Language Model-based Agent Platform
Data Interpreter: An LLM Agent For Data Science
ByteComposer: a Human-like Melody Composition Method based on Language Model Agent
Genie: Generative Interactive Environments
Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping
User-LLM: Efficient LLM Contextualization with User Embeddings
∞Bench: Extending Long Context Evaluation Beyond 100K Tokens
Neeko: Leveraging Dynamic LoRA for Efficient Multi-Character Role-Playing Agent
MuLan: Multimodal-LLM Agent for Progressive Multi-Object Diffusion
Large Language Model-based Human-Agent Collaboration for Complex Task Solving
AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling
Shall We Talk: Exploring Spontaneous Collaborations of Competing LLM Agents
WorldCoder, a Model-Based LLM Agent: Building World Models by Writing Code and Interacting with the Environment
Comprehensive Cognitive LLM Agent for Smartphone GUI Automation
LLM Agents for Psychology: A Study on Gamified Assessments
Structured Chain-of-Thought Prompting for Few-Shot Generation of Content-Grounded QA Conversations
LongAgent: Scaling Language Models to 128k Context through Multi-Agent Collaboration
Learning From Failure: Integrating Negative Examples when Fine-tuning Large Language Models as Agents
Modelling Political Coalition Negotiations Using LLM-based Agents
LLM can Achieve Self-Regulation via Hyperparameter Aware Generation
Robust agents learn causal world models
Chain-of-Thought Reasoning Without Prompting
A Human-Inspired Reading Agent with Gist Memory of Very Long Contexts
AgentLens: Visual Analysis for Agent Behaviors in LLM-based Autonomous Systems
Towards better Human-Agent Alignment: Assessing Task Utility in LLM-Powered Applications
DoRA: Weight-Decomposed Low-Rank Adaptation
GLoRe: When, Where, and How to Improve LLM Reasoning via Global and Local Refinements
Grounding LLMs For Robot Task Planning Using Closed-loop State Feedback
Agent Smith: A Single Image Can Jailbreak One Million Multimodal LLM Agents Exponentially Fast
Simulating Human Strategic Behavior: Comparing Single and Multi-agent LLMs
Large Language Models as Minecraft Agents
PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Preference Alignment
OS-Copilot: Towards Generalist Computer Agents with Self-Improvement
Predictive representations: building blocks of intelligence
Secret Collusion Among Generative AI Agents
THE COLOSSEUM: A Benchmark for Evaluating Generalization for Robotic Manipulation
Self-Correcting Self-Consuming Loops for Generative Model Training
V-STaR: Training Verifiers for Self-Taught Reasoners
Alphazero-like Tree-Search can Guide Large Language Model Decoding and Training
Feedback Loops With Language Models Drive In-Context Reward Hacking
Understanding the Weakness of Large Language Model Agents within a Complex Android Environment
Large Language Models: A Survey
Why Solving Multi-agent Path Finding with Large Language Model has not Succeeded Yet
An Interactive Agent Foundation Model
UFO: A UI-Focused Agent for Windows OS Interaction
Real-World Robot Applications of Foundation Models: A Review
TimeArena: Shaping Efficient Multitasking Language Agents in a Time-Aware Simulation
ScreenAgent: A Vision Language Model-driven Computer Control Agent
In-Context Principle Learning from Mistakes
Discovering Temporally-Aware Reinforcement Learning Algorithms
WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
How Well Can LLMs Negotiate? NegotiationArena Platform and Analysis
Decision Theory-Guided Deep Reinforcement Learning for Fast Learning
The Future of Cognitive Strategy-enhanced Persuasive Dialogue Agents: New Perspectives and Trends
Can Large Language Model Agents Simulate Human Trust Behaviors?
ScreenAI: A Vision-Language Model for UI and Infographics Understanding
Self-Discover: Large Language Models Self-Compose Reasoning Structures
AnyTool: Self-Reflective, Hierarchical Agents for Large-Scale API Calls
Can Generative Agents Predict Emotion?
S-Agents: self-organizing agents in open-ended environment
Large Language Models as an Indirect Reasoner: Contrapositive and Contradiction for Automated Reasoning
MobileVLM V2: Faster and Stronger Baseline for Vision Language Model
QuantAgent: Seeking Holy Grail in Trading by Self-Improving Large Language Model
Beyond Lines and Circles: Unveiling the Geometric Reasoning Gap in Large Language Models
In-context learning agents are asymmetric belief updaters
Systematic Biases in LLM Simulations of Debates
Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science
Chain-of-Feedback: Mitigating the Effects of Inconsistency in Responses
Vision-Language Models Provide Promptable Representations for Reinforcement Learning
Guiding Language Model Math Reasoning with Planning Tokens
DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models
LLM Agents in Interaction: Measuring Personality Consistency and Linguistic Alignment in Interacting Populations of Large Language Models
Graph-enhanced Large Language Models in Asynchronous Plan Reasoning
Understanding the planning of LLM agents: A survey
Solution-oriented Agent-based Models Generation with Verifier-assisted Iterative In-context Learning
Collaborative Agents for Software Engineering
K-Level Reasoning with Large Language Models
Efficient Exploration for LLMs
Formal-LLM: Integrating Formal Language and Natural Language for Controllable LLM-based Agents
StrokeNUWA: Tokenizing Strokes for Vector Graphic Synthesis
Efficient Tool Use with Chain-of-Abstraction Reasoning
Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios
Can Large Language Models be Trusted for Evaluation? Scalable Meta-Evaluation of LLMs as Evaluators via Agent Debate
LLaMP: Large Language Model Made Powerful for High-fidelity Materials Knowledge Retrieval and Distillation
Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual Perception
code
Beyond Direct Diagnosis: LLM-based Multi-Specialist Agent Consultation for Automatic Diagnosis
Divide and Conquer: Language Models can Plan and Self-Correct for Compositional Text-to-Image Generation
YODA: Teacher-Student Progressive Learning for Language Models
Turn-taking and Backchannel Prediction with Acoustic and Large Language Model Fusion
Hi-Core: Hierarchical Knowledge Transfer for Continual Reinforcement Learning
Meta-Prompting: Enhancing Language Models with Task-Agnostic Scaffolding
AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents
HAZARD Challenge: Embodied Decision Making in Dynamically Changing Environments
Memory Matters: The Need to Improve Long-Term Memory in LLM-Agents
OK-Robot: What Really Matters in Integrating Open-Knowledge Models for Robotics
WARM: On the Benefits of Weight Averaged Reward Models
PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety
AttentionLego: An Open-Source Building Block For Spatially-Scalable Large Language Model Accelerator With Processing-In-Memory Technology
The Conversation is the Command: Interacting with Real-World Autonomous Robot Through Natural Language
Tool-LMM: A Large Multi-Modal Model for Tool Agent Learning
A match made in consistency heaven: when large language models meet evolutionary algorithms
CivRealm: A Learning and Reasoning Odyssey in Civilization for Decision-Making Agents
Self-Rewarding Language Models
R-Judge: Benchmarking Safety Risk Awareness for LLM Agents
Large Language Models Are Neurosymbolic Reasoners
ReFT: Reasoning with Reinforced Fine-Tuning
Scalable Pre-training of Large Autoregressive Image Models
What makes for a 'good' social actor? Using respect as a lens to evaluate interactions with language agents
https://arxiv.org/abs/2401.08500](Code
MultiPLY: A Multisensory Object-Centric Embodied Large Language Model in 3D World
DoraemonGPT: Toward Understanding Dynamic Scenes with Large Language Models
Self-Imagine: Effective Unimodal Reasoning with Multimodal Models using Self-Imagination
Application of LLM Agents in Recruitment: A Novel Framework for Resume Screening
Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation
Exploring the Potential of Large Language Models in Self-adaptive Systems
A Study on Training and Developing Large Language Models for Behavior Tree Generation
When Large Language Model Agents Meet 6G Networks: Perception, Grounding, and Alignment
CodeAgent: Enhancing Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level Coding Challenges
Small LLMs Are Weak Tool Learners: A Multi-LLM Agent
ModaVerse: Efficiently Transforming Modalities with LLMs
AntEval: Quantitatively Evaluating Informativeness and Expressiveness of Agent Social Interactions
Mutual Enhancement of Large Language and Reinforcement Learning Models through Bi-Directional Feedback Mechanisms: A Case Study
EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction
Designing Heterogeneous LLM Agents for Financial Sentiment Analysis
Resource-cloud
Evidence to Generate (E2G): A Single-agent Two-step Prompting for Context Grounded and Retrieval Augmented Reasoning
Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training
Personal LLM Agents: Insights and Survey about the Capability, Efficiency and Security
The Impact of Reasoning Step Length on Large Language Models
InfiAgent-DABench: Evaluating Agents on Data Analysis Tasks
Agent Alignment in Evolving Social Norms
Exploring Large Language Model based Intelligent Agents: Definitions, Methods, and Prospects
Metacognition is all you need? Using Introspection in Generative Agents to Improve Goal-directed Behavior
Agent AI: Surveying the Horizons of Multimodal Interaction
LLaVA-ϕ: Efficient Multi-Modal Assistant with Small Language Model
Self-Contrast: Better Reflection Through Inconsistent Solving Perspectives
INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning
Act as You Learn: Adaptive Decision-Making in Non-Stationary Markov Decision Processes
Economics Arena for Large Language Models
LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning
Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models
AppAgent: Multimodal Agents as Smartphone Users
Capture the Flag: Uncovering Data Insights with Large Language Models
AgentCoder: Multi-Agent-based Code Generation with Iterative Testing and Optimisation
DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines
DSPy
ASSISTGUI: Task-Oriented Desktop Graphical User Interface Automation
Generative agents in the streets: Exploring the use of Large Language Models (LLMs) in collecting urban perceptions
dIR -- Discrete Information Retrieval: Conversational Search over Unstructured (and Structured) Data with Large Language Models
Large Language Models Play StarCraft II: Benchmarks and A Chain of Summarization Approach
Large Language Models Empowered Agent-based Modeling and Simulation: A Survey and Perspectives
Agent Assessment of Others Through the Lens of Self
Evaluating Language-Model Agents on Realistic Autonomous Tasks
LLM-ARK: Knowledge Graph Reasoning Using Large Language Models via Deep Reinforcement Learning
ProTIP: Progressive Tool Retrieval Improves Planning
ReST meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent
Practices for Governing Agentic AI Systems
TinyGSM: achieving >80% on GSM8k with small language models
Modeling Complex Mathematical Reasoning via Large Language Model based MathAgent
Rational Sensibility: LLM Enhanced Empathetic Response Generation Guided by Self-presentation Theory
LiFT: Unsupervised Reinforcement Learning with Foundation Models as Teachers
LLMind: Orchestrating AI and IoT with LLMs for Complex Task Execution
Holodeck: Language Guided Generation of 3D Embodied AI Environments
Adaptive parameter sharing for multi-agent reinforcement learning
Auto MC-Reward: Automated Dense Reward Design with Large Language Models for Minecraft
Vision-Language Models as a Source of Rewards
Learning Coalition Structures with Games
diff History for Long-Context Language Agents
Sequential Planning in Large Partially Observable Environments guided by LLMs
Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models
STaR
KwaiAgents: Generalized Information-seeking Agent System with Large Language Models
Chain of Code: Reasoning with a Language Model-Augmented Code Emulator
AVA: Towards Autonomous Visualization Agents through Visual Perception-Driven Decision-Making
Generating Illustrated Instructions
Fortify the Shortest Stave in Attention: Enhancing Context Awareness of Large Language Models for Effective Tool Use
Generative agent-based modeling with actions grounded in physical, social, or digital space using Concordia
LLM as OS (llmao), Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent Ecosystem
https://arxiv.org/abs/2312.03052
Beyond Isolation: Multi-Agent Synergy for Improving Knowledge Graph Constructio
Exchange-of-Thought: Enhancing Large Language Model Capabilities through Cross-Model Communication
LLM A*: Human in the Loop Large Language Models Enabled A* Search for Robotics
Towards Learning a Generalist Model for Embodied Navigation
Universal Self-Consistency for Large Language Model Generation
STaR-method
Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine
Some intuitions about large language models
Building the Future of Responsible AI: A Pattern-Oriented Reference Architecture for Designing Large Language Model based Agents
System 2 Attention (is something you might need too)
Igniting Language Intelligence: The Hitchhiker's Guide From Chain-of-Thought Reasoning to Language Agents
A Language Agent for Autonomous Driving
Digital Socrates: Evaluating LLMs through explanation critiques
AutoMix: Automatically Mixing Language Models
DeepThought: An Architecture for Autonomous Self-motivated Systems
LLM Augmented Hierarchical Agents
Prompt Engineering a Prompt Engineer
ADaPT: As-Needed Decomposition and Planning with Language Models
RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation
Youtube. Adam Kalai presents "Recursive Self-improving Code Generation - talk 2.11.2023
Plug-and-Play Policy Planner for Large Language Model Powered Dialogue Agents
SAGE: Smart home Agent with Grounded Execution
Efficient Human-AI Coordination via Preparatory Language-based Convention
Generating Sequences by Learning to Self-Correct
Autonomous Robotic Reinforcement Learning with Asynchronous Human Feedback
Towards A Natural Language Interface for Flexible Multi-Agent Task Assignment
Leveraging Word Guessing Games to Assess the Intelligence of Large Language Models
Multi-Agent Consensus Seeking via Large Language Models
CompeteAI: Understanding the Competition Behaviors in Large Language Model-based Agents
PromptAgent: Strategic Planning with Language Models Enables Expert-level Prompt Optimization
RCAgent: Cloud Root Cause Analysis by Autonomous Agents with Tool-Augmented Large Language Models
Diverse Conventions for Human-AI Collaboration
.
Woodpecker: Hallucination Correction for Multimodal Large Language Models
In-Context Learning Creates Task Vectors
Instruct and Extract: Instruction Tuning for On-Demand Information Extraction
Function Vectors in Large Language Models
LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay
ToolChain*: Efficient Action Space Navigation in Large Language Models with A* Search
Democratizing Reasoning Ability: Tailored Learning from Large Language Model
AgentTuning: Enabling Generalized Agent Abilities for LLMs
Language Agents for Detecting Implicit Stereotypes in Text-to-image Models at Scale
The next grand challenge for AI
OpenAgents: An Open Platform for Language Agents in the Wild
Improving Large Language Model Fine-tuning for Solving Math Problems
CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization
A Zero-Shot Language Agent for Computer Control with Structured Reflection
AgentCF: Collaborative Learning with Autonomous Language Agents for Recommender Systems
Octopus: Embodied Vision-Language Programmer from Environmental Feedback
MemGPT: Towards LLMs as Operating Systems
Promptor: A Conversational and Autonomous Prompt Generation Agent for Intelligent Text Entry Techniques
Towards Robust Multi-Modal Reasoning via Model Selection
The Temporal Structure of Language Processing in the Human Brain Corresponds to The Layered Hierarchy of Deep Language Models
Empowering Psychotherapy with Large Language Models: Cognitive Distortion Detection through Diagnosis of Thought Prompting
LangNav: Language as a Perceptual Representation for Navigation
FireAct: Toward Language Agent Fine-tuning
Walking Down the Memory Maze: Beyond Context Limit through Interactive Reading
Crystal: Introspective Reasoners Reinforced with Self-Feedback
Self-Supervised Behavior Cloned Transformers are Path Crawlers for Text Games
Language Agent Tree Search Unifies Reasoning Acting and Planning in Language Models
Agent Instructs Large Language Models to be General Zero-Shot Reasoners
Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for Autonomous LLM-powered Multi-Agent Architectures
DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines
Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation
Lyfe Agents: Generative agents for low-cost real-time social interactions
EcoAssistant: Using LLM Assistant More Affordably and Accurately
Large Language Models as Analogical Reasoners
Conceptual Framework for Autonomous Cognitive Entities
OceanGPT: A Large Language Model for Ocean Science Tasks
SmartPlay : A Benchmark for LLMs as Intelligent Agents
GRID: A Platform for General Robot Intelligence Development
RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large Language Models
Motif: Intrinsic Motivation from Artificial Intelligence Feedback
Promptbreeder: Self-Referential Self-Improvement Via Prompt Evolution
Natural Language based Context Modeling and Reasoning with LLMs: A Tutorial
You only look at the screens: Multimodal Chain-of-Action Agents
MindAgent: Emergent Gaming Interaction
The Rise and Potential of Large Language Model Based Agents: A Survey
Agents: An Open-source Framework for Autonomous Language Agents
Physically Grounded Vision-Language Models for Robotic Manipulation
Life-inspired Interoceptive Artificial Intelligence for Autonomous and Adaptive Agents
Unleashing the Power of Graph Learning through LLM-based Autonomous Agents
RecMind: Large Language Model Powered Agent For Recommendation
A Survey on Large Language Model based Autonomous Agents
https://arxiv.org/abs/2308.10848
Graph of Thoughts: Solving Elaborate Problems with Large Language Models
AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation
WizardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct
Reinforced Self-Training (ReST) for Language Modeling
Scaling Relationship on Learning Mathematical Reasoning with Large Language Models
WebArena: A Realistic Web Environment for Building Autonomous Agents
Communicative Agents for Software Development
ToolAlpaca: Generalized Tool Learning for Language Models with 3000 Simulated Cases
Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach
SELFEVOLVE: A Code Evolution Framework via Large Language Models
Prompt Sapper: LLM-Empowered Software Engineering Infrastructure for AI-Native Services
Auto-GPT for Online Decision Making: Benchmarks and Additional Opinions
Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Large Language Models
Impossible Distillation: from Low-Quality Model to High-Quality Dataset & Model for Summarization and Paraphrasing
Voyager: An Open-Ended Embodied Agent with Large Language Models
Gorilla: Large Language Model Connected with Massive APIs
Tree of Thoughts: Deliberate Problem Solving with Large Language Models
TinyStories: How Small Can Language Models Be and Still Speak Coherent English?
ImageBind: One Embedding Space To Bind Them All
Visual Chain of Thought: Bridging Logical Gaps with Multimodal Infillings
BabyBeeAGI: Task Management and Functionality Expansion on top of BabyAGI
Entire Talk" by Stanford eCorner
Improving Grounded Language Understanding in a Collaborative Environment by Interacting with Agents Through Help Feedback
RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment
ChemCrow: Augmenting large-language models with chemistry tools
Teaching Large Language Models to Self-Debug
ChatPipe: Orchestrating Data Preparation Program by Optimizing Human-ChatGPT Interactions
Generative Agents: Interactive Simulacra of Human Behavior
GPTeam
CAMEL: Communicative Agents for "Mind" Exploration of Large Scale Language Model Society
Self-Refine: Iterative Refinement with Self-Feedback
https://selfrefine.info/
HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace
DERA: Enhancing Large Language Model Completions with Dialog-Enabled Resolving Agents
TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs
Task-driven Autonomous Agent Utilizing GPT-4, Pinecone, and LangChain for Diverse Applications
Sparks of Artificial General Intelligence: Early experiments with GPT-4
Reflexion: Language Agents with Verbal Reinforcement Learning
Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference
Large Language Models Can Self-Improve
Emergent Abilities of Large Language Models
Deep learning, reinforcement learning, and world models
STaR: Bootstrapping Reasoning With Reasoning
Self-Consistency Improves Chain of Thought Reasoning in Language Models
Chain of Hindsight Aligns Language Models with Feedback
Shared computational principles for language processing in humans and deep language models
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
A* Search Without Expansions: Learning Heuristic Functions with Deep Q-Networks
Language Models are Few-Shot Learners
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
Is it an Agent, or Just a Program?: A Taxonomy for Autonomous Agents.
A formal Basis for the Heuristic Determination of Minimum Cost Paths
defined
Generalist Agent was defined by Reed et al. in 2022
Reinfoceement Learning Agent
Stanford cs234 lecture slide 19
Kenton et al. (2021)
"The Role of Learning in Autonomous Robots"(1991)
"Intelligence without reason"
"New approaches to Intelligence"
Building Brains for Bodies
"The Artificial Life Route to Artificial Intelligence Building Embodied, Situated Agent"
Shavit et al. (2023)
Agent AI
Multi-task learning
Massively Multi-task learning
generic
Emerming Abilities
CoT
derives
OpenAI models
perfect accuracy
LongRoPE
MemWalker-interactive agent
"Architectures for Contex"
"The Dimensions of Context Space"
CoT
Self-Consistency
In-Context Learning
STaR
V-STaR
Recursively Self-Improving (RSI)
STOP]#stop). Adam Kalai explains insights from this technique in this [lecture about STOP
LLM Self-Improves its LLM
Self-Play
Tree-Of-Thought
Graph-of-Thought
ToolChain*
TinyStories
Textbook-like datasets with Exercises
TinyGSM
Interactive Agent Foundational Model
Resource-cloud
Artificial General Intelligence
Levels of AGI
high compared to human-level performance on multiple benchmarks despite incomplete AGI
incremental tasks and Discontinuous tasks
AlphaZero
Consciousness: Here, There but Not Everywhere
Perspetives on Consciousness by Chalmers
Ilya Sutskever defined a practicalconsciousness test
The free energy principle and cognitive agents
A Survey on Large Language Model based Autonomous Agents
LLM Powered Autonomous Agents
The Rise and Potential of Large Language Model Based Agents: A Survey
Large Language Models Empowered Agent-based Modeling and Simulation: A Survey and Perspectives
LLMs
podcast
copy url
source logoopenai.com
Sparks of Artificial General Intelligence: Early experiments with GPT-4
qrdl
Reverie
https://twitter.com/_akhaliq
qrdl
@qrdl](/u/qrdl), you posted a bunch of pprs! It will take me a while to catch up ![:grinning: :grinning:
qrdl
qrdl
Whose job does AI automate? - YouTube
A.I. and Stochastic Parrots | FACTUALLY with Emily Bender and Timnit Gebru - YouTube
qrdl
N2U
qrdl
Discussion thread for "Foundational must read GPT/LLM papers"
qrdl
codie
Ask Your PDF
LightPDF
N2U
qrdl
Limits on Compositionality
jwatte

🏷オープンソースツールとアプリケーションの役割

画像 1

LLMエージェントの機能と主要モジュール

LLMエージェントは、LLMアプリケーションを使用して、複雑なタスクを実行するエージェントであり、計画、メモリなどの主要モジュールを組み合わせたアーキテクチャを使用して機能します。計画モジュールはタスクを分解し、メモリモジュールは過去の相互作用を管理し、ツールは外部環境とやり取りします。

LLMエージェントのフレームワークと機能

LLMエージェントのフレームワークには、ユーザーリクエスト、エージェント/ブレイン、計画、メモリなどの主要コンポーネントが含まれます。計画モジュールはタスクを解決するためのステップを分解し、メモリモジュールは過去の相互作用を管理します。ツールは外部環境とやり取りし、エージェントが必要な情報を取得します。LLMエージェントは、計画とメモリを使用して動的な環境で操作し、過去の経験を活用して未来の行動を計画します。

オープンソースツールとアプリケーションの役割

LangChain

LangChainは、言語モデルによって動作するアプリケーションを開発するためのオープンソースフレームワークです。AIと機械学習の開発者が、大規模言語モデルをシームレスに統合できるようにします。

LLMStack

LLMStackは、独自のデータを使用してAIアプリ、チャットボット、エージェントを構築するためのオープンソースプラットフォームです。カスタムフロントエンドを通じて独自のユーザーエクスペリエンスを作成できます。

Chainlit

Chainlitは、ビジネスロジックとデータを組み込んだChatGPTのようなアプリケーションの作成を迅速化するためのオープンソースPythonパッケージです。非同期Pythonフレームワークで、アプリケーションの開発を加速します。

Superagent

Superagentは、クラウドプラットフォームで補完されたオープンソースフレームワークで、インフラストラクチャの懸念なしにChatGPTのようなAIアシスタントを簡単に展開できます。

Helicone

Heliconeは、GPTモデルを効果的にクエリするためのオープンソースフレームワークです。ジェネレーティブAIを活用するビジネス向けの可観測性プラットフォームとして機能します。

オープンソースツールとアプリケーションの役割

オープンソースツールとアプリケーションの役割には、Open Interpreter、LLama2.c、Fooocus、CodeLllama、Llama-gpt、OpenTF、Vall-E-X、AI Town、Seamless Communicationなどが含まれます。これらのプロジェクトは、LLMやLLMエージェントを使用して、さまざまなタスクやコミュニケーションを改善することを目指しています。

考察

これらのプロジェクトは、LLMやLLMエージェントを活用して、コミュニケーション、タスクの自動化、言語翻訳などの分野で革新をもたらす可能性があります。特に、FooocusやCodeLllamaのようなプロジェクトは、特定のタスクに焦点を当てたLLMを使用して、複雑な問題の解決やコード生成を支援することができます。また、Seamless Communicationのようなプロジェクトは、異なる言語間でのコミュニケーションを円滑にすることができます。これらの取り組みは、LLM技術の進化と産業への適用に期待が高まります。

copy url
source logogithub.com
https://aka.ms/autogen-dc
https://aka.ms/autogen-roadmap
chat
chatbot
gpt
chat-application
agent-based-framework
agent-oriented-programming
gpt-4
chatgpt
llmops
gpt-35-turbo
llm-agent
llm-inference
agentic
llm-framework
agentic-agi
copy url
source logomedium.com
domain-specific
general LLMs aren’t well suited for
Open Interpreter
LLama2.c
Fooocus
CodeLllama
Llama-gpt
OpenTF
Vall-E-X
AI Town
Seamless Communication
this October 30th to November 2nd. With ODSC West 2023
, you’ll enjoy talks, sessions, events, and more that squarely focus on this fast-paced field.
! Get your pass today
copy url
source logomarktechpost.com
copy url
source logogithub.com
Langchain
Llama Index
Llama Hub
Haystack
Embedchain
VisualGPT
Lindy AI
CensusGPT
Hearth AI
RCI Agent for MiniWoB++
babyagi
ChatGPT plugins
fixie.ai
Toolformer
Visual ChatGPT
HuggingGPT
copy url
source logopromptingguide.ai
Chain of Thought (opens in a new tab)
Tree of Thoughts (opens in a new tab)
Wang et al., 2023 (opens in a new tab)
ReAct (opens in a new tab)
Reflexion (opens in a new tab)
GITM (opens in a new tab)
MRKL (opens in a new tab)
Toolformer (opens in a new tab)
Function Calling (opens in a new tab)
HuggingGPT (opens in a new tab)
Ma et al. (2023) (opens in a new tab)
Horton (2023) (opens in a new tab)
Generative Agents (opens in a new tab)
AgentSims (opens in a new tab)
Blind Judgement (opens in a new tab)
Ziems et al. (2023) (opens in a new tab)
ChemCrow (opens in a new tab)
Math Agents]assist researchers in exploring, discovering, solving and proving mathematical problems. [EduChat (opens in a new tab)
CodeHelp (opens in a new tab)
Mehta et al. (2023) (opens in a new tab)
ChatDev (opens in a new tab)
ToolLLM (opens in a new tab)
MetaGPT (opens in a new tab)
D-Bot (opens in a new tab)
IELLM (opens in a new tab)
Dasgupta et al. 2023 (opens in a new tab)
OS-Copilot (opens in a new tab)
LangChain (opens in a new tab)
AutoGPT (opens in a new tab)
Langroid (opens in a new tab)
AutoGen (opens in a new tab)
OpenAgents (opens in a new tab)
LlamaIndex (opens in a new tab)
GPT Engineer (opens in a new tab)
DemoGPT (opens in a new tab)
GPT Researcher (opens in a new tab)
AgentVerse (opens in a new tab)
Agents (opens in a new tab)
BMTools (opens in a new tab)
crewAI (opens in a new tab)
Phidata (opens in a new tab)
ALFWorld (opens in a new tab)
IGLU (opens in a new tab)
Tachikuma (opens in a new tab)
AgentBench (opens in a new tab)
SocKET (opens in a new tab)
AgentSims (opens in a new tab)
ToolBench (opens in a new tab)
WebShop (opens in a new tab)
Mobile-Env (opens in a new tab)
WebArena (opens in a new tab)
GentBench (opens in a new tab)
RocoBench (opens in a new tab)
EmotionBench (opens in a new tab)
PEB (opens in a new tab)
ClemBench (opens in a new tab)
E2E (opens in a new tab)
LLM Powered Autonomous Agents (opens in a new tab)
MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (opens in a new tab)
A Survey on Large Language Model based Autonomous Agents (opens in a new tab)
The Rise and Potential of Large Language Model Based Agents: A Survey (opens in a new tab)
Large Language Model based Multi-Agents: A Survey of Progress and Challenges (opens in a new tab)
Cognitive Architectures for Language Agents (opens in a new tab)
Introduction to LLM Agents (opens in a new tab)
LangChain Agents (opens in a new tab)
Building Your First LLM Agent Application (opens in a new tab)
Building LLM applications for production (opens in a new tab)
Awesome LLM agents (opens in a new tab)
Awesome LLM-Powered Agent (opens in a new tab)
Functions, Tools and Agents with LangChain (opens in a new tab)
copy url
source logoturingpost.com
Turing Post
LangChain
LLMStack
Chainlit
Superagent
Helicone
LLamaIndex
Weaviate
Semantic Kernel
Hugging Face Gradio
FlowiseAI

🏷最新の研究動向と実装事例

画像 1

NutanixのLLMエージェント実装

Nutanixは、AI/MLをインフラストラクチャに統合し、LLMエージェントの実装を行っています。LLMモデルの状態クラス生成やアクション選択テンプレートなどの手順が示されており、推論とアクションの統合にはヒューリスティックや強化学習が活用されています。

LLMエージェントの実装における洞察

LLMエージェントの実装には、複数のステップが必要であり、透明性とトレース可能な推論が重要である。また、LLMエージェントは複数のアクションスレッドを管理し、CoTアプローチを活用して自律的にアクション選択を行うことができる。推論アクションループの統合には、ヒューリスティックや強化学習が効果的に活用されている。

NutanixのLLMエージェント実装に関連する詳細情報

  • NutanixはAI/MLをインフラストラクチャに統合し、LLMエージェントの実装を行っている。
  • LLMモデルの状態クラス生成やアクション選択テンプレートが示されている。
  • 推論とアクションの統合にはヒューリスティックや強化学習が活用されている。
  • LLMエージェントは複数のアクションスレッドを管理し、CoTアプローチを活用して自律的にアクション選択を行う。
  • 推論アクションループの統合には、ヒューリスティックや強化学習が効果的に活用されている。
nutanix.com
Nutanix

RAISEとAIOSの概要

RAISEは、GPT-4などの大規模言語モデル(LLMs)を会話エージェントに統合する能力を向上させるアーキテクチャであり、会話の文脈と連続性を維持します。初期評価では、RAISEが従来のエージェントに比べて利点を示し、AI分野に貢献しています。AIOSは、LLMエージェントのパフォーマンスと効率性を向上させるオペレーティングシステムであり、信頼性と効率性を実証しています。

RAISEとAIOSの考察

RAISEとAIOSは、LLMsを活用した会話エージェントとオペレーティングシステムの進化を示しています。RAISEは会話の文脈を維持し、AI分野に新たな貢献をもたらす一方、AIOSはエージェントのパフォーマンスと効率性を向上させることで、将来のAIOSエコシステムの発展を目指しています。両者は、大規模言語モデルを活用したエージェントシステムの発展において重要な役割を果たしており、AI技術の進化に貢献しています。

進化するオペレーティングシステム

オペレーティングシステム(OS)の進化は、単純なバッチジョブ処理から、タイムシェアリングやマルチタスク処理などの高度なプロセス管理技術へと進化してきました。OSの進化により、プロセススケジューリング、メモリ管理、ファイルシステム管理などの特定の責任が明確になり、効率性と管理性が向上しました。さらに、GUIの登場やOSエコシステムの拡大により、OSはよりインタラクティブでユーザーセントリックなものとなり、開発者ツールやランタイムライブラリを提供することで、ソフトウェア開発を促進し、OSアプリケーションエコシステムを繁栄させています。

大規模言語モデルエージェント

大規模言語モデル(LLM)ベースの自律エージェントは、複雑なタスクの解決に自然言語の指示を受け取ります。LLMベースのエージェントは、単一エージェントシステムと複数エージェントシステムに一般的に分類されます。単一エージェントシステムでは、旅行計画や個人向けの推薦、芸術的デザインなどの複雑なタスクを解決するために単一のLLMエージェントが使用されます。一方、複数エージェントシステムでは、複数のエージェントが相互作用し、協力的、競争的、またはその両方の関係を持って問題を解決します。

AIOSのレイヤー

AIOSのアーキテクチャは、アプリケーションレイヤー、カーネルレイヤー、ハードウェアレイヤーに分かれており、各レイヤーがシステム全体の責任を明確に分担しています。アプリケーションレイヤーでは、旅行エージェントや数学エージェントなどのエージェントアプリケーションが開発され、展開されます。カーネルレイヤーにはOSカーネルとLLMカーネルがあり、それぞれ非LLMおよびLLM固有の操作を担当しています。ハードウェアレイヤーは、CPU、GPU、メモリ、ディスクなどの物理コンポーネントから構成されており、LLMカーネルのシステムコールは直接ハードウェアとやり取りせず、OSのシステムコールを介してハードウェアリソースを管理します。
copy url
source logolinkedin.com
large language models
can pass the Turing Test
copy url
source logoarxiv.org
copy url
source logodeeperinsights.com
source
LLM-powered agents
source
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
enhancing the reasoning of LLMs.
BabyAGI
AutoGPT
ChatGPT Plus
the potential for this technology
copy url
source logonutanix.com
™
chain-of-thought
action plan generation
current LLM literature
constitutional AI
chain-of-thought (CoT)
Nutanix AHV®
NVIDIA® A100
Ampere™ architecture
nvidia-smi
NVIDIA Management Library (NVML)
CUDA
SARSA
copy url
source logoarxiv.org
https://github.com/agiresearch/AIOS
wooldridge1995intelligent,
jennings1998roadmap,
bresciani2004tropos,
OpenAIGPT4,
llama,
team2023gemini,
ge2023openagi,
ouyang2022training,
chung2022scaling,
touvron2023llama2,
geng2022recommendation,
kojima2022large,
nijkamp2022codegen,
taylor2022galactica,
hao2023reasoning,
kim2023language,
ross2023programmer,
driess2023palm
brohan2023can
ge2023openagi,
yao2023react,
shinn2023reflexion,
deng2023mind2web,
Figure 1
Figure 2
4
OS-history,
UNIX-time-sharing,
hoare1974monitors,
engler1995exokernel,
liu1973scheduling,
dijkstra2002cooperating,
denning1968working,
daley1968virtual,
rosenblum1992design,
mckusick1984fast,
http://apple-history.com/128k
https://winworldpc.com/product/windows-3/31
https://www.gnome.org/
ge2023llm
https://developer.android.com/studio
https://developer.apple.com/xcode/
https://cloud.google.com/sdk
ge2023llm
ge2023openagi
ge2023openagi,
schick2023toolformer,
yao2023impact,
parisi2022talm,
tang2023toolalpaca,
nakano2022webgpt,
deng2023mind2web,
zhang2023toolcoder,
brohan2023can
fan2022minedojo
wang2023voyager
boiko2023emergent
bran2023chemcrow
huang2022language
xiang2023language
ge2023llm
li2023camel
park2023generative
hong2023metagpt
qian2023communicative
wu2023autogen
josifoski2023flows
fu2023improving
du2023improving
chan2023chateval
liang2023encouraging
hua2023war
Figure 2
4
Figure 3
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/Round-robin_scheduling
Figure 4
https://en.wikipedia.org/wiki/Beam_search
touvron2023llama2,
jiang2023mistral,
biderman2023pythia,
chen2023extending,
peng2023yarn,
Figure 5
mialon2023augmented
Table 1
ge2023openagi,
Langchain,
rapidapi,
thompson1984reflections,
bugiel2012towards,
Table 2
Table 3
gemma2024,
touvron2023llama2,
papineni2002bleu,
zhang2019bertscore,
4
Table 5
https://openai.com/research/gpt-4
https://ai.facebook.com/blog/largelanguage-model-llama-meta-ai
https://courses.cs.washington.edu/courses/cse451/16wi/readings/lecture_readings/LCM_OperatingSystemsTimeline_Color_acd_newsize.pdf
https://github.com/langchain-ai/langchain
https://rapidapi.com/hub
https://blog.google/technology/developers/gemma-open-models/

🏷LLMエージェントの応用分野

画像 1

LLMアプリケーションの応用分野

LLMアプリケーションの応用分野において、LLMを使用した新しいアーキテクチャやトレンドが注目されています。AIスタートアップやテクノロジー企業で使用されるリファレンスアーキテクチャやインコンテキストラーニング、ベクトルデータベース、オーケストレーションフレームワーク、ホスティング、AIエージェントフレームワークなどが重要な要素として挙げられています。

LLMアーキテクチャの新興トレンド

LLMアプリケーションの新しいアーキテクチャやトレンドは、AIの能力を拡大する大規模言語モデルによって新たな地平を開いています。これらのトレンドには、モデルのスケールに合わせた展開アーキテクチャの進化や、新しいMLOpsパターン、インフラ最適化、分散型アーキテクチャなどが含まれます。これらの革新を理解し、適切に活用することで、次世代のLLMベースのアプリケーションを構築する準備が整います。

LLMエージェントの応用分野に関連する詳細情報

[WSS23] LLMエージェントとの相互作用の調査 - Wolfram Community

Wolfram CommunityのStaff Picksで、LLMエージェントとの相互作用に関する投稿が編集コラムに選ばれ、Your ProfileでFeatured Contributor Badgeが表示されます。

LLMアーキテクチャの新興トレンド

LLMアーキテクチャの新興トレンドは、AIの能力を拡大する大規模言語モデルによって新たな地平を開いています。これらのトレンドには、モデルのスケールに合わせて展開アーキテクチャを進化させる、新しいMLOpsパターン、インフラ最適化、分散型、マルチモーダルアーキテクチャなどが含まれます。これらの革新を理解することで、次世代のLLMベースのアプリケーションを構築する準備が整います。

身体化されたLLMエージェントは組織されたチームで協力する方法を学ぶ

LLMエージェントは、推論、計画、意思決定に不可欠なツールとして台頭しています。LLMエージェントと人間エージェントの協力を通じて、指定されたリーダーシップがチームの効率に与える影響を示す一連の実験を通じて、LLMエージェントが示すリーダーシップの質と自発的な協力行動に光を当てています。

LLMを中心としたエージェントシステムの概要

LLMを中心とした自律エージェントシステムでは、LLMがエージェントの脳として機能し、計画、記憶、ツールの使用などの重要なコンポーネントで補完されます。これらの要素は、エージェントが複雑なタスクを効果的に処理し、問題解決能力を向上させるのに役立ちます。
copy url
source logoarxiv.org
2020
2019
2019a
2021
2019b
2023
2016
2019
2020
2021
2016
2023
2023
2023
2023a
2022
2023a
2023
1
2023b
2023c
2023
2023b
1971
1999
2023
2023
2023c
1
D
1958
1993
1992
1994
2000
2003
2003
6
7
C
D
8
9
2023
2023
2023a
2022
2023
2023b
2022
2023
2023
2023
2023
2017
2019
2018
2021
2023
2021
2022
2019
2017
2019
2023
2023d
2023
2023a
2023b
2023
2023
2023
2023
2023
2023a
2023b
2023b
2023c
2023b
2020
2022
2022a
2023
2023
2023
2020
2020
2021
2021
2023
2022b
2023
2023c
2
2023c
2
2023
2023c
2
2023
3
1999
2023a
A
A
2018
2021
1
2022
2023
1
D
1
4
4
2003
1
5
E
4
2004
4
F
4
4
G
6
A
H
7
7
7
3
8
8
8
I
9
8
9
10
10
1
9
10
4.4
8
2
3
11
12
13
4
14
copy url
source logowolfram.com
http://wolfr.am/StaffPicks
Your Profile
Featured Contributor Board
copy url
source logogithub.io
AutoGPT
GPT-Engineer
BabyAGI
#
Prompt Engineering
#
#
(CoT; Chain of thought
Wei et al. 2022
Yao et al. 2023
Liu et al. 2023
#
Yao et al. 2023
Yao et al. 2023
Shinn & Labash 2023
Shinn & Labash, 2023
Shinn & Labash, 2023
Liu et al. 2023
WebGPT comparisons
summarization from human feedback
human preference dataset
Liu et al. 2023
Laskin et al. 2023
Laskin et al. 2023
UCB
Duan et al. 2017
A3C
DQN
Laskin et al. 2023
#
conversations
#
Miller 1956
#
MIPS
(Locality-Sensitive Hashing): It introduces a
(Approximate Nearest Neighbors Oh Yeah): The core data structure are
(Hierarchical Navigable Small World): It is inspired by the idea of
small world networks
(Facebook AI Similarity Search): It operates on the assumption that in high dimensional space, distances between nodes follow a Gaussian distribution and thus there should exist
(Scalable Nearest Neighbors): The main innovation in ScaNN is
Google Blog, 2020
ann-benchmarks.com
#
Animals using tools
Karpas et al. 2022
Parisi et al. 2022
Schick et al. 2023
“External APIs” section
Plugins
function calling
Shen et al. 2023
Shen et al. 2023
Li et al. 2023
Li et al. 2023
#
#
Bran et al. 2023
LangChain
ReAct
MRKLs
Boiko et al. (2023)
#
Park, et al. 2023
self-reflection
Park et al. 2023
#
AutoGPT
GPT-Engineer
#
#
#
“Chain of thought prompting elicits reasoning in large language models.”
“Tree of Thoughts: Dliberate Problem Solving with Large Language Models.”
“LLM+P: Empowering Large Language Models with Optimal Planning Proficiency”
“ReAct: Synergizing reasoning and acting in language models.”
“Announcing ScaNN: Efficient Vector Similarity Search”
https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389
“Reflexion: an autonomous agent with dynamic memory and self-reflection”
“In-context Reinforcement Learning with Algorithm Distillation”
“MRKL Systems A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning.”
Why is Vector Search so fast?
“API-Bank: A Benchmark for Tool-Augmented LLMs”
“HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace”
“ChemCrow: Augmenting large-language models with chemistry tools.”
“Emergent autonomous scientific research capabilities of large language models.”
“Generative Agents: Interactive Simulacra of Human Behavior.”
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/AntonOsika/gpt-engineer
copy url
source logoa16z.com
in-context learning
Hyena paper
recent post
AI canon
create different types of embeddings
Prompt Engineering Guide
other sources
debating
AutoGPT
fastest-growing Github repo in history
copy url
source logomedium.com

🏷セキュリティとプライバシーの考慮事項

画像 1

LLMアプリケーションのセキュリティとプライバシーの考慮事項

LLMアプリケーションのセキュリティとプライバシーの考慮事項について、OWASPのトップ10脆弱性やプロンプトインジェクション、セキュアでない出力処理、トレーニングデータの改ざんなどが挙げられる。また、LLM Fine-Tuningにおけるプライバシーリスクとして、Input PrivacyとOutput Privacyのリスクがあることが指摘されている。

LLMアプリケーションのセキュリティとプライバシーの考慮事項に対する考察

LLMアプリケーションのセキュリティとプライバシーの考慮事項は重要であり、OWASPのリソースを活用することが勧められている。また、Fine-Tuningにおけるプライバシーリスクに対処するために、InputとOutputのプライバシーリスクを異なる技術を使用して管理することが重要である。データの保護とプライバシー確保が、LLMアプリケーションの設計と運用において重要な要素となる。

LLMアプリケーションのセキュリティとプライバシーの考慮事項に関連する有益な情報

LLMアプリケーションのセキュリティとプライバシーの考慮事項に関連する情報として、OWASPのトップ10脆弱性やFine-Tuningにおけるプライバシーリスクについての詳細な情報が提供されています。また、セキュリティとプライバシーを確保するための具体的な対策や技術についても言及されています。
OWASP Top 10 for LLM Applicationsでは、LLMアプリケーションにおける脆弱性や攻撃シナリオ、予防メカニズムについて詳細に説明されています。また、Fine-TuningにおけるInput PrivacyとOutput Privacyのリスクについても具体的に取り上げられています。
LLMアプリケーションのセキュリティとプライバシーの考慮事項に関する情報は、データの保護とプライバシー確保が重要であることを強調し、適切な対策を講じることが必要であることを示しています。
copy url
source logoklu.ai
copy url
source logomedium.com
Prompt Engineering
fine-tuning
generative and predictive
Fine-tuning LLM
NLU
, where the LLM returns highly plausible but incorrect answers. hallucination
relevant and contextual prompts
chain-of-thought
examples
Autonomous Agents
Python Math Libraries, Search and more
context
Autonomous Agents
prompt pipelines
Prompt chaining
Agents
LangSmith
ChainForge
copy url
source logolinkedin.com
DAN
OWASP Top 10 for LLM Applications
defense-in-depth blog post
copy url
source logomithrilsecurity.io
AI Total Cost of Ownership Calculator
Samsung’s data
Beyond Privacy Trade-offs with Structured Transparency
OpenAI recently introduced a fine-tuning feature that allows customization of their models for specific use cases
recent incident as described by OpenAI
Samsung’s data was leaked
Quantifying Memorization Across Neural Language Models
here
Privacy Enhancing Technologies
The Enterprise Guide to Adopting GenAI
BlindChat
open-source
audited on our Confidential AI stack
here
contact us
Discord

🏷将来の展望と課題

画像 1

AIエージェントの新たな視点と自動化能力

AIエージェントは、AI技術の進化により新たな焦点として浮上し、自律的な意思決定や高度な自動化レベルへの移行を予示している。AIエージェントは、環境内で感知し、行動する能力を持ち、従来のLLMアプリケーションよりも複雑なタスクを自律的に実行する能力を持つ。彼らはワークフロー全体を再設計し、エンドツーエンドのワークフロー自動化を実現する可能性がある。

AIエージェントの台頭と産業への影響

AIエージェントの台頭は、技術アーキテクチャとエコシステムの見直しを必要とし、従来のロボティックプロセス自動化(RPA)を超える適応型自動化を提供する。彼らの影響は、産業全体に及び、ビジネスモデルやユーザーインタラクション方法の変化を促す。AIエージェントは、社会の行動や習慣にも影響を与え、新たな考え方や戦略が求められる。彼らは、技術の進歩だけでなく、社会経済的および文化的パターンの深い変革をもたらす可能性がある。

AIエージェントの未来展望と課題

AIエージェントの未来展望と課題に関連する情報を提供します。

AIOS-Agentエコシステムの概要

AIOS-Agentエコシステムは、大規模言語モデル(LLM)が(人工)知能オペレーティングシステム(IOSまたはAIOS)として機能し、AIエージェントアプリケーション(エージェントまたはAAP)が開発される革新的なエコシステムを描いています。これにより、AIOS-Agentエコシステムが豊かになり、従来のOS-APPエコシステムからのパラダイムシフトが示されます。LLMの影響はAIアプリケーションレベルに限定されず、コンピュータシステム、アーキテクチャ、ソフトウェア、プログラミング言語の設計と実装を革新するでしょう。
AIOS-Agentエコシステムの概要

オープンソースLLMsの利点とプロジェクト・組織の種類

オープンソースLLMsの利点は透明性と柔軟性、コスト削減、追加機能とコミュニティの貢献が挙げられる。プロジェクトの種類はテキスト生成、コード生成、仮想チュータリングなど多岐にわたる。使用する組織はIBMやNASA、出版社、医療機関など多様である。

AgentBenchによるLLMエージェントの評価と課題

AgentBenchによるLLMエージェントの評価では、商用LLMsとOSS競合他社の性能に格差があることが示されている。失敗の理由は長期的な推論や意思決定能力の低さであり、トレーニングデータや環境の改善が重要である。エージェントのパフォーマンス向上のためには、データセットや統合評価パッケージの活用が必要である。

将来の展望と課題

  • IBMやNASAなどの組織は、オープンソースLLMsを活用して、気候変動対策やジオスペーシャルデータのトレーニングに取り組んでいる。
  • 出版社やジャーナリストは、情報の分析や要約にオープンソースLLMsを使用しており、プロプライエタリなデータの共有を避けている。
  • 医療機関は、医療ソフトウェアにおいて診断支援や治療最適化にオープンソースLLMsを導入している。
  • AgentBenchの発展により、LLMエージェントの性能向上や課題の克服が期待される。データセットや環境の改善により、エージェントの能力が向上し、実世界の使命に対応できるようになる。
copy url
source logoopenreview.net
copy url
source logowww.ibm.com
copy url
source logoarxiv.org
https://www.microsoft.com/en-us/windows/
https://www.apple.com/macos/
https://www.apple.com/ios/
https://www.android.com/
https://www.microsoft.com/en-us/microsoft-365/word/
https://www.google.com/docs/about/
https://www.microsoft.com/en-us/microsoft-365/outlook/
https://www.google.com/gmail/about/
1](#S0.F1). These tools empower application developers to efficiently design, implement, and run their applications within the operating system environment. For instance, the well-known iOS ecosystem includes a dedicated application development toolkit known as Xcode 11 1111 [https://developer.apple.com/xcode/
https://www.apple.com/app-store/
section 2.1.2](#S2.SS1.SSS2), the command-line interface used to be the narrow bridge between users to interact with OS. Since command lines are highly professional, it prevented broader groups of users from easily and efficiently operating the computers. From Xerox Alto introduced by Palo Alto Research Center (PARC) in 1973 13 1313 [https://spectrum.ieee.org/xerox-alto
http://apple-history.com/128k
https://winworldpc.com/product/windows-3/31
https://www.gnome.org/
https://www.kde.org/
https://unityd.org/
section 2.1.3](#S2.SS1.SSS3)). Similarly, embedded devices ranging from IoT to robotics pose the aspect of real-time responses and more strict resource management in OS, which has been reflected in many successful embedded OSes such as VxWorks 19 1919 [https://www.windriver.com/products/vxworks
https://blackberry.qnx.com/en
https://www.apple.com/siri/
https://www.microsoft.com/en-us/cortana
https://history-computer.com/atlas-computer/
https://en.wikipedia.org/wiki/History_of_Unix
https://www.magzter.com/stories/technology/Gadgets-Philippines/ARPANET
https://en.wikipedia.org/wiki/Windows_1.0x
https://www.brookings.edu/articles/chatgpt-educational-friend-or-foe/
https://github.com/agiresearch/OpenAGI
https://github.com/joonspk-research/generative_agents
https://openai.com/research/gpt-4v-system-card
1](#S3.T1), respectively. Taking the example of the ecosystem in modern Linux operating system–the most widely-used open source operating system community by now, here are the successful experiences in its evolving history. Specifically, a rich set of built-in and third-party libraries from thousands of experts and open-source developers leads to the success of the Linux ecosystem. Managing the install/uninstall and dependencies of those libraries, along with the versioning for tracking software development, is critical. The Linux ecosystem, over the past few decades, provides library management tools such as dpkg 25 2525 [https://man7.org/linux/man-pages/man1/dpkg.1.html
http://yum.baseurl.org/
https://git-scm.com/
https://www.gnu.org/software/bash/
https://nvd.nist.gov/vuln/detail/cve-2017-0143
https://nvd.nist.gov/vuln/detail/cve-2010-0188
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/
https://github.com/hwchase17/langchain
https://doi.org/10.1145/1478873.1478950
https://www.computeexpresslink.org/
https://news.agpt.co/
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://doi.org/10.5281/zenodo.1234
https://docs.kernel.org/scheduler/sched-design-CFS.html
https://doi.org/10.1109/MSECP.2003.1236233
https://doi.org/10.1145/361011.361061
https://doi.org/10.1109/AINA.2010.81
https://github.com/tatsu-lab/stanford_alpaca
https://courses.cs.washington.edu/courses/cse451/16wi/readings/lecture_readings/LCM_OperatingSystemsTimeline_Color_acd_newsize.pdf
https://princeton-nlp.github.io/language-agent-impact/
copy url
source logolinkedin.com
Generative AI: A Corporate Guide to Embracing the Technological Revolution
ICAREX
GenerazioneAI
copy url
source logomedium.com

🖍 考察

結果の確認

LLMエージェントの有名な論文やOSSについての調査から、AI技術の発展における重要な課題や可能性について幅広い視点が提供されています。特に、AIの危険性や限界に関する研究は、技術の進化と社会への影響を考える上で重要な示唆を与えています。また、LLMエージェントのフレームワークやプロジェクトに関する情報も豊富に含まれており、革新的なアプリケーションや取り組みがAI技術の進化にどのように貢献しているかが明らかになっています。

重要性と影響の分析

調査結果から得られる情報は、AI技術の将来における重要な方向性や課題を示しています。これらの研究成果は、AIの倫理的な問題や技術の限界に対する理解を深める上で重要であり、今後の研究や開発に大きな影響を与える可能性があります。また、既存の仮説や他の応用例との比較を通じて、今回の調査結果がどれだけ革新的で重要かを評価することが重要です。

ネクストステップの提案

調査から生じた疑問点や未解決の課題に対処するために、さらなる研究や行動計画が必要です。特に、AI技術の倫理的な側面や社会への影響に関する研究をさらに深めることが重要です。また、AI技術の発展に伴う課題や可能性について、産業や社会にどのような影響を与えるかを検討することも重要です。

今後の調査の方向性

今回の調査における限界点を踏まえて、AI技術のさらなる発展に向けて新たな調査のテーマを提案します。例えば、AI技術の倫理的な問題や社会的影響に焦点を当てた研究や、AI技術を活用した革新的なアプリケーションの開発に関する調査が重要です。さらに、AI技術の進化に伴う新たな課題や可能性について、継続的な情報収集と分析を行うことが重要です。

📖 レポートに利用された参考文献

検索結果: 33件追加のソース: 0件チャット: 0件

117件の参考文献から33件の情報を精査し、約165,000語の情報を整理しました。あなたは約14時間の調査時間を削減したことになります🎉

調査された文献
117件
精査された情報
33件
整理された情報量
約165,000語
削減された時間
約14時間

🏷 導入: LLMエージェントとは

zjunlp/LLMAgentPapers: Must-read Papers on LLM Agents. - GitHub
Must-read Papers on Large Language Model Agents. "Here are some other paper lists you might be interested in: Prompt4ReasoningPapers: Reasoning with ...
github.comgithub.com
Introduction to LLM Agents | NVIDIA Technical Blog
To describe agents a bit more, here's the general architecture of an LLM-powered agent application (Figure 1). Architecture diagram of an LLM- ...
nvidia.comnvidia.com
What is LLM Agent? Ultimate Guide to LLM Agent [With Technical ...
LLM Agents Application. 1. Autogpt. An open-source Python program, Auto GPT, was developed from the ground up on the same framework as GPT-4. It was recently ...
ionio.aiionio.ai
How I developed my first LLM-Agent based application | by Lucasvittal
So I firstly build the schema, after that, the architecture and finally the backlog. To facilitate the backlog construction, I divided the ...
medium.commedium.com

🏷 GPTや他のLLMに関する論文の重要性

Autonomous Agents (LLMs) research papers. Updated Daily. - GitHub
LLM agent includes roles: requirements engineer, architect, developer, tester and scrum master. Uses same prompt, with role-identifier, role-specific ...
github.comgithub.com
Foundational must read GPT/LLM papers - OpenAI Developer Forum
Initializing a new thread on the very best, must read, well-written, papers on Large Language Model capabilities, limits, and use.
openai.comopenai.com
[PDF] A Survey on Large Language Model based Autonomous Agents
When comparing LLM-based autonomous agents to traditional machine learning, designing the agent architecture is analogous to determining the ...
arxiv.orgarxiv.org
Awesome-LLM: a curated list of Large Language Model - GitHub
Here is a curated list of papers about large language models, especially relating to ChatGPT. It also contains frameworks for LLM training, tools to deploy LLM, ...
github.comgithub.com

🏷 オープンソースツールとアプリケーションの役割

LLM Agents - Prompt Engineering Guide
... LLM-based agents in various applications. Agents (opens in a new tab): an open-source library/framework for building autonomous language agents. The library ...
promptingguide.aipromptingguide.ai
10 open-source tools for LLM applications development - Turing Post
LLMStack: An open-source platform for building AI apps, chatbots, and agents using proprietary data. Chainlit: An open-source Python package ...
turingpost.comturingpost.com
10+ Open-Source Tools for LLM Applications Development
LeMUR is a user-friendly platform that simplifies the development of LLM applications on spoken data. It empowers developers to perform diverse ...
marktechpost.commarktechpost.com
llm-agent · GitHub Topics
The llama-cpp-agent framework is a tool designed for easy interaction with Large Language Models (LLMs). It provides a simple yet robust interface using llama- ...
github.comgithub.com
A curated list of awesome LLM agents. - GitHub
A curated list of awesome LLM agents. Open source, application, platform, or resources. If you have a suggestion, feel free to open an issue or pull request.
github.comgithub.com
9 Open Source LLMs and Agents to Watch | by ODSC
So let's take a look at some interesting and new open-source LLMs and LLM agents that we are following: Open Interpreter: Open Interpreter is a ...
medium.commedium.com

🏷 最新の研究動向と実装事例

From LLM to Conversational Agent: A Memory Enhanced ... - arXiv
This paper introduces RAISE (Reasoning and Acting through Scratchpad and Examples), an advanced architecture enhancing the integration of Large ...
arxiv.orgarxiv.org
LLM Agent Operating System - arXiv
We present the architecture of such an operating system, outline the core challenges it aims to resolve, and provide the basic design and ...
arxiv.orgarxiv.org
Impact of Large Language Models on Enterprise: Benefits, Risks ...
Overview of important LLM tools and foundation models set to impact on the market. Hopefully, this article will help you navigate the hurdles ...
linkedin.comlinkedin.com
The Intelligent Agents of Tomorrow: A Guide to LLM-Powered Agents
Explore the world of LLM-powered AI agents, their capabilities in task execution, information gathering, and communication.
deeperinsights.comdeeperinsights.com
It's Time For AI: How Nutanix Implemented an LLM Agent
In this article, we present a Large Language Model (LLM) agent, engineered to perform both language generation and decision tracing .
nutanix.comnutanix.com

🏷 LLMエージェントの応用分野

Emerging Architectures for LLM Applications | Andreessen Horowitz
A reference architecture for the LLM app stack. It shows the most common systems, tools, and design patterns used by AI startups and tech ...
a16z.coma16z.com
Emerging Trends in LLM Architecture | by Bijit Ghosh - Medium
Overview of LLM Architecture Trends ; Deployment Architecture — New patterns to serve LLMs with low latency at scale ; Data Architecture — ...
medium.commedium.com
[WSS23] Investigating LLM-agent interactions - Wolfram Community
The project is composed of three major steps: Firstly, we generate LLM-based societies of increasing complexity, translating real-world societal structures and ...
wolfram.comwolfram.com
Embodied LLM Agents Learn to Cooperate in Organized Teams
This research studies the integration of prompt-based organizational structures to teams of LLM agents, contributing to more efficient and ...
arxiv.orgarxiv.org
LLM Powered Autonomous Agents | Lil'Log
Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, ...
lilianweng.github.iolilianweng.github.io

🏷 セキュリティとプライバシーの考慮事項

Security Considerations When Building LLM Applications - LinkedIn
8. Excessive agency: Similar to point 7, if you allow an LLM and its agents to perform tasks that deal with data or other applications, there ...
linkedin.comlinkedin.com
Privacy Risks of LLM Fine-Tuning - Mithril Security Blog
LLMs can inadvertently disclose confidential data through two main pathways - input privacy breaches when data is exposed to third-party AI ...
mithrilsecurity.iomithrilsecurity.io
Emerging Large Language Model (LLM) Application Architecture
Due to the highly unstructured nature of Large Language Models (LLMs), there are thought and market shifts taking place on how to implement LLMs ...
medium.commedium.com
Emerging Architectures for LLM Applications - Klu.ai
Three pivotal trends are also shaping the trajectory of LLM applications: Federated Learning, Sparse Attention Mechanisms, and New Model Architectures.
klu.aiklu.ai

🏷 将来の展望と課題

Future Trends in the AI Industry: Parallel Evolution of LLM and AI ...
This article explores the concurrent evolution of LLM and AI Agents, examining their joint role in driving tech innovation and forecasting their ...
medium.commedium.com
The Rise of AI Agents - Understanding Their Role and Integrating ...
In the current context, characterized by rapid technological evolution and an increasing demand for innovative solutions, AI Agents emerge as ...
linkedin.comlinkedin.com
LLM as OS, Agents as Apps: Envisioning AIOS, Agents and ... - arXiv
The study provides a rich array of scenarios that serve as a valuable resource for future research into the alignment of LLM-based Agents.
arxiv.orgarxiv.org
AgentBench: Evaluating LLMs as Agents - OpenReview
We present AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's ...
openreview.netopenreview.net
Open source large language models: Benefits, risks and types - IBM
An open source LLM offers transparency regarding how it works, its architecture and training data and methodologies, and how it's used.
ibm.comibm.com

📖 レポートに利用されていない参考文献

検索結果: 57件追加のソース: 0件チャット: 0件
13 Not-to-Miss Research Papers on LLMs - Analytics India Magazine
If you're eager to delve into the realm of LLMs and chatbots, exploring their origins and architecture, look no further.
analyticsindiamag.comanalyticsindiamag.com
Sanyam Bhutani on LinkedIn: My favourite LLM paper is finally open ...
My favourite LLM paper is finally open source! Stanford University had published a paper running a simulation of Generative Agents which ...
linkedin.comlinkedin.com
FinMem: A Performance-Enhanced LLM Trading Agent with Layered ...
Recent advancements in Large Language Models (LLMs) have exhibited notable efficacy in question-answering (QA) tasks across diverse domains.
paperswithcode.compaperswithcode.com
hyp1231/awesome-llm-powered-agent - GitHub
Awesome LLM-Powered Agent · General Reasoning & Planning & Tool Using · Multi-Agent Cooperation · Framework & Open-Source · Trustworthy.
github.comgithub.com
RSS3 Open-Source AI Architecture - turn any LLM into Web3 AI ...
With OpenAgent, customized AI agents can be created for specific needs such as analysis, prediction, content creation, and transaction ...
cryptoslate.comcryptoslate.com
AgentLM - Building an open source LLM agent - LinkedIn
AgentInstruct dataset was constructed for 6 tasks (AlfWorld, WebShop, Mind2Web, Knowledge Graph, Operating System and Database) in 3 stages -.
linkedin.comlinkedin.com
Exploring 5 Open Source LLMs and Agents Shaping Conversational ...
The world of open source Language Models (LLMs) and conversational agents continues to expand, bringing forth innovative solutions and ...
medium.commedium.com
Navigating the AI Landscape: How Leveraging LLMs Can Drive ...
AI is disrupting the tech industry in a myriad of ways, with the introduction of tools like ChatGPT, Midjourney, and DALL·E seeing millions of users every ...
applydigital.comapplydigital.com
The Future of LLM: Harnessing its Potential in Advance Technology
Impact of LLM On Emerging Technologies. As AI drives more attention in the digital economy, Organizations started focusing on intellectual property ...
smartdatainc.comsmartdatainc.com
Generative AI Market Size, Share, Trends | LLMs Industry Impact
The Generative AI market report covers the technology roadmap till 2030, with insights into the short-term, mid-term and long-term developments.
marketsandmarkets.commarketsandmarkets.com
7 LLM Use Cases 2024 | *instinctools
Get a breakdown on the benefits, risks, and real-world LLM use cases to explore the potential of generative AI for your company.
instinctools.cominstinctools.com
AI and LLMs in Finance: Opportunities, Challenges, and the Road ...
This week, we're going to explore a specific case of using AI and LLMs in the financial industry and how it might impact the future. In a world ...
medium.commedium.com
A Venture Capitalist's Guide to Agent Startups: LLM Integrations ...
Explore the critical role of venture capitalists in the AI startup ecosystem, focusing on investments in LLM and generative AI technologies like ChatGPT, ...
skimai.comskimai.com
AI and Disruptive Innovation - Towards Data Science
AI will have a major impact on the global economy. It is estimated that the market for predictive analytics software will amount to more than $6.5 billion ...
towardsdatascience.comtowardsdatascience.com
Comparing the best: Top 5 open-source LLMs - n8n Blog
There is no single best open-source LLM. And here's why. There are many benchmarks for rating the models, and various research groups decide for ...
n8n.ion8n.io
[PDF] Comparing Single and Multi-agent LLMs - arXiv
We compare two LLM structures: a single LLM and a multi-agent LLM architecture. We compare their abilities to (1) create realistic strategies, ...
arxiv.orgarxiv.org
(PDF) AIOS: LLM Agent Operating System - ResearchGate
Inspired by these challenges, this paper presents AIOS, an LLM agent operating system, which embeds large language model into operating systems ...
researchgate.netresearchgate.net
8 Top Open-Source LLMs for 2024 and Their Uses - DataCamp
Discover some of the most powerful open-source LLMs and why they will be crucial for the future of generative AI.
datacamp.comdatacamp.com
Mistral AI vs. Meta: Comparing Top Open-source LLMs
In this article, we explain in more detail each of the novelty concepts that Mistral AI added to traditional Transformer architectures and we ...
towardsdatascience.comtowardsdatascience.com
(PDF) A Review on Large Language Models: Architectures ...
However, this review paper aims to help practitioners, researchers, and experts thoroughly understand the evolution of LLMs, pre-trained ...
researchgate.netresearchgate.net
[PDF] BOLAA: BENCHMARKING AND ORCHESTRATING LLM ...
Therefore, we provide a comprehensive comparison of LAA in terms of both agent architectures and LLM backbones. Additionally, we propose a new strategy to ...
openreview.netopenreview.net
10 Trends in LLM Dev Business Owners Need To Watch in 2024
Look at the top 10 trends in large language model development, including the rise of multimodal LLMs. Consider the future of LLMs for your ...
techopedia.comtechopedia.com
Four LLM trends since ChatGPT and their implications for AI builders
LLMs are getting operational with plugins, agents and frameworks. The big challenges of LLM training being roughly solved, another branch of ...
towardsdatascience.comtowardsdatascience.com
The Future of Generative AI Agents - Foundation Capital
LLMs represent a new paradigm for agent design. Historically, agent design has leaned on rule-based systems, such as finite-state machines and ...
foundationcapital.comfoundationcapital.com
Multimodality, Tool Use, and Autonomous Agents: Large Language ...
In this explainer, we described how LLMs and related systems are already much more than conversationalists, and can be used to generate ...
georgetown.edugeorgetown.edu
Unpacking the New Trends: Machine Learning, AI, Neural Networks ...
Unpacking the New Trends: Machine Learning, AI, Neural Networks & the Rise of LLM's.
linkedin.comlinkedin.com
Open challenges in LLM research - Chip Huyen
Open challenges in LLM research · 1. Reduce and measure hallucinations · 2. Optimize context length and context construction · 3. Incorporate other ...
huyenchip.comhuyenchip.com
AIOS: LLM Agent Operating System - arXiv
This paper proposes the AIOS architecture, demonstrating the potential to facilitate the development and deployment of LLM-based agents, ...
arxiv.orgarxiv.org
benchmarking LLM agents on consequential real-world tasks
We hope that having more benchmarks measuring how well current LLM agents perform on very difficult real-world tasks will help researchers come to greater ...
openphilanthropy.orgopenphilanthropy.org
A Taxonomy for Autonomous LLM-Powered Multi-Agent Architectures
This paper proposes a comprehensive multi-dimensional taxonomy, engineered to analyze how autonomous LLM-powered multi-agent systems balance the ...
researchgate.netresearchgate.net
Salesforce AI Researchers Introduce the Evolution of LLM ...
Salesforce AI Researchers Introduce the Evolution of LLM-Augmented Autonomous Agents and the Innovative BOLAA Strategy.
marktechpost.commarktechpost.com
LLM-Powered Applications' Architecture Patterns and Security ...
We examine the significance of big data, innovative model architectures, and immense computing power in unlocking the infinite possibilities of ...
medium.commedium.com
What are top open source projects in LLM space : r/LocalLLaMA
What are top open source projects in LLM space · SillyTavern frontend · koboldcpp backend (for GGML/GGUF models) · oobabooga's text-generation- ...
reddit.comreddit.com
Open Source AI Agents to Watch - MLQ.ai
This agent enables multi-agent conversations to solve tasks for the user. AutoGen is a framework that enables the development of LLM applications using multiple ...
mlq.aimlq.ai
New OPEN SOURCE Software ENGINEER Agent Outperforms ALL ...
How To Not Be Replaced By AGI https://youtu.be/AiDR2aMye5M Stay Up To Date With AI Job ...
youtube.comyoutube.com
Flowise - Low code LLM Apps Builder
Open source low-code tool for developers to build customized LLM orchestration flow and AI agents.
flowiseai.comflowiseai.com
Private LLMs: Data Protection Potential and Limitations - Skyflow
This post explains private LLMs and their potential and limits amid rising AI privacy concerns. - Mar 05, 2024 - By.
skyflow.comskyflow.com
Security Risks Of Generative Al Open Source Software
The vulnerability here is that the output of the LLM is passed directly to an exec statement, which will execute the code snippet. It should be ...
robustintelligence.comrobustintelligence.com
LLM Agents can Autonomously Hack Websites - arXiv
There are many ways for LLMs to interface with tools, some of which are proprietary (e.g., OpenAI's). Report issue for preceding element.
arxiv.orgarxiv.org
LLMs Pose Major Security Risks, Serving As 'Attack Vectors' - C3 AI
Researchers uncover AI security vulnerabilities using open source LLMs, highlighting the importance of safeguarding against AI privacy risks ...
c3.aic3.ai
Open source AI chatbot privacy issues addressed by Sendbird
We recently caught up with John S. Kim and discussed open-source large language models and privacy issues with open-source LLMs.
appdevelopermagazine.comappdevelopermagazine.com
Security and Privacy: Closed Source vs Open Source Battle - Medium
The challenges posed by AI regarding data privacy and security are substantial, but not insurmountable. As AI continues to evolve, so must our ...
medium.commedium.com
[PDF] A Survey on Large Language Model (LLM) Security and Privacy
The Ugly (§6): We explore the vulnerabilities and defenses in LLMs, categorizing vulnerabilities into two main groups: AI Model Inherent ...
arxiv.orgarxiv.org
Security concerns · Issue #1026 · langchain-ai/langchain - GitHub
I have some concerns about the way some of this code is implemented. To name the two I've noticed so far, the llm_math and sql_database ...
github.comgithub.com
Generative AI Architectural Patterns - LinkedIn
A short primer on the 5 most prevalent Generative AI architectural patterns today: Black-box LLM APIs. Enterprise Apps in LLM App Store.
linkedin.comlinkedin.com
[PDF] arXiv:2402.15538v1 [cs.MA] 23 Feb 2024
agent architecture designs consolidates the fast development of LLM agents. As such, a lightweight, easy-to-use library for efficiently ...
arxiv.orgarxiv.org
A Safety-focused LLM Constellation Architecture for Healthcare - arXiv
The case for AI-based Healthcare Agents. The US healthcare industry is facing a massive shortage of healthcare workers, that became even more ...
arxiv.orgarxiv.org
Architecting the future of AI agents: 5 flexible conversation ...
Let's explore how powerful agents are designed based on these frameworks. Global framework—the architect's blueprints.
voiceflow.comvoiceflow.com
LLM Risks: Insights & Real-World Case Studies - Akto
LLM security involves protecting AI systems like ChatGPT, Bard from potential risks such as biased outputs, malicious use and maintaining privacy in their ...
akto.ioakto.io
Multi-Agent LLM Applications | A Review of Current Research, Tools ...
Research into agent-based systems has encompassed the study of robots, with a focus on path planning, robot navigation, and the Sense-Plan-Act ...
victordibia.comvictordibia.com
Building Your First LLM Agent Application | NVIDIA Technical Blog
In cases where you must build complex agents ... The choice of OSS frameworks depends on the type of ... LLM-Powered Data Agent for Data Analysis.
nvidia.comnvidia.com
Part 1 - Generalized Architecture for LLM API's in Client Applications
The below diagram presents a generalized inference architecture designed for the integration of Language Model (LLM) APIs within a client ...
linkedin.comlinkedin.com
Future of Coding — Multi-Agent LLM Framework using LangGraph
In this we first define the architecture flow and different Agents. We specialize these agents in specific tasks and assign the role. High Level ...
medium.commedium.com
An LLM-agent Collaboration Framework with Agent Team Optimization
In this work, we propose to construct a strategic team of agents communicating in a dynamic interaction architecture based on the task query. Specifically, we ...
openreview.netopenreview.net
Markus Stoll - os #llm #agent #agi #github - LinkedIn
Here's a breakdown of the architecture: Agent ... architectural design and - data utilization. ... You can find more details and an example ...
linkedin.comlinkedin.com
Building RAG-based LLM Applications for Production - Anyscale
In this guide, we will learn how to develop and productionize a retrieval augmented generation (RAG) based LLM application, with a focus on ...
anyscale.comanyscale.com
AI Agents: When and How To Implement - Arize AI
Delve into the intricacies of AI agents in the LLMOps era. Explore five pivotal considerations for AI agent implementation, ...
arize.comarize.com

📊 ドメイン統計

参照ドメイン数: 49引用済み: 19総文献数: 117
1
Favicon for https://arxiv.orgarxiv.org
引用: 5件/ 総数: 13件
引用率: 38.5%
2
Favicon for https://medium.commedium.com
引用: 5件/ 総数: 13件
引用率: 38.5%
3
Favicon for https://github.comgithub.com
引用: 5件/ 総数: 9件
引用率: 55.6%
4
Favicon for https://linkedin.comlinkedin.com
引用: 3件/ 総数: 10件
引用率: 30.0%
5
Favicon for https://a16z.coma16z.com
引用: 1件/ 総数: 6件
引用率: 16.7%
6
Favicon for https://nvidia.comnvidia.com
引用: 1件/ 総数: 5件
引用率: 20.0%
7
Favicon for https://promptingguide.aipromptingguide.ai
引用: 1件/ 総数: 5件
引用率: 20.0%
8
Favicon for https://openreview.netopenreview.net
引用: 1件/ 総数: 3件
引用率: 33.3%
9
Favicon for https://nutanix.comnutanix.com
引用: 1件/ 総数: 2件
引用率: 50.0%
10
Favicon for https://marktechpost.commarktechpost.com
引用: 1件/ 総数: 2件
引用率: 50.0%
11
Favicon for https://lilianweng.github.iolilianweng.github.io
引用: 1件/ 総数: 2件
引用率: 50.0%
12
Favicon for https://openai.comopenai.com
引用: 1件/ 総数: 1件
引用率: 100.0%
13
Favicon for https://ionio.aiionio.ai
引用: 1件/ 総数: 1件
引用率: 100.0%
14
Favicon for https://deeperinsights.comdeeperinsights.com
引用: 1件/ 総数: 1件
引用率: 100.0%
15
Favicon for https://wolfram.comwolfram.com
引用: 1件/ 総数: 1件
引用率: 100.0%
16
Favicon for https://turingpost.comturingpost.com
引用: 1件/ 総数: 1件
引用率: 100.0%
17
Favicon for https://mithrilsecurity.iomithrilsecurity.io
引用: 1件/ 総数: 1件
引用率: 100.0%
18
Favicon for https://klu.aiklu.ai
引用: 1件/ 総数: 1件
引用率: 100.0%
19
Favicon for https://ibm.comibm.com
引用: 1件/ 総数: 1件
引用率: 100.0%
20
Favicon for https://researchgate.netresearchgate.net
引用: 0件/ 総数: 5件
引用率: 0.0%
21
Favicon for https://towardsdatascience.comtowardsdatascience.com
引用: 0件/ 総数: 4件
引用率: 0.0%
22
Favicon for https://foundationcapital.comfoundationcapital.com
引用: 0件/ 総数: 2件
引用率: 0.0%
23
Favicon for https://victordibia.comvictordibia.com
引用: 0件/ 総数: 2件
引用率: 0.0%
24
Favicon for https://analyticsindiamag.comanalyticsindiamag.com
引用: 0件/ 総数: 1件
引用率: 0.0%
25
Favicon for https://paperswithcode.compaperswithcode.com
引用: 0件/ 総数: 1件
引用率: 0.0%
26
Favicon for https://cryptoslate.comcryptoslate.com
引用: 0件/ 総数: 1件
引用率: 0.0%
27
Favicon for https://applydigital.comapplydigital.com
引用: 0件/ 総数: 1件
引用率: 0.0%
28
Favicon for https://smartdatainc.comsmartdatainc.com
引用: 0件/ 総数: 1件
引用率: 0.0%
29
Favicon for https://marketsandmarkets.commarketsandmarkets.com
引用: 0件/ 総数: 1件
引用率: 0.0%
30
Favicon for https://instinctools.cominstinctools.com
引用: 0件/ 総数: 1件
引用率: 0.0%
31
Favicon for https://skimai.comskimai.com
引用: 0件/ 総数: 1件
引用率: 0.0%
32
Favicon for https://n8n.ion8n.io
引用: 0件/ 総数: 1件
引用率: 0.0%
33
Favicon for https://datacamp.comdatacamp.com
引用: 0件/ 総数: 1件
引用率: 0.0%
34
Favicon for https://techopedia.comtechopedia.com
引用: 0件/ 総数: 1件
引用率: 0.0%
35
Favicon for https://georgetown.edugeorgetown.edu
引用: 0件/ 総数: 1件
引用率: 0.0%
36
Favicon for https://huyenchip.comhuyenchip.com
引用: 0件/ 総数: 1件
引用率: 0.0%
37
Favicon for https://openphilanthropy.orgopenphilanthropy.org
引用: 0件/ 総数: 1件
引用率: 0.0%
38
Favicon for https://reddit.comreddit.com
引用: 0件/ 総数: 1件
引用率: 0.0%
39
Favicon for https://mlq.aimlq.ai
引用: 0件/ 総数: 1件
引用率: 0.0%
40
Favicon for https://youtube.comyoutube.com
引用: 0件/ 総数: 1件
引用率: 0.0%
41
Favicon for https://flowiseai.comflowiseai.com
引用: 0件/ 総数: 1件
引用率: 0.0%
42
Favicon for https://skyflow.comskyflow.com
引用: 0件/ 総数: 1件
引用率: 0.0%
43
Favicon for https://robustintelligence.comrobustintelligence.com
引用: 0件/ 総数: 1件
引用率: 0.0%
44
Favicon for https://c3.aic3.ai
引用: 0件/ 総数: 1件
引用率: 0.0%
45
Favicon for https://appdevelopermagazine.comappdevelopermagazine.com
引用: 0件/ 総数: 1件
引用率: 0.0%
46
Favicon for https://voiceflow.comvoiceflow.com
引用: 0件/ 総数: 1件
引用率: 0.0%
47
Favicon for https://akto.ioakto.io
引用: 0件/ 総数: 1件
引用率: 0.0%
48
Favicon for https://anyscale.comanyscale.com
引用: 0件/ 総数: 1件
引用率: 0.0%
49
Favicon for https://arize.comarize.com
引用: 0件/ 総数: 1件
引用率: 0.0%

新しいテーマを調査する

運営会社サービス概要メディア
  • 📜要約
  • 📊ビジュアライズ
  • 🖼関連する画像
  • 🔍詳細
    • 🏷導入: LLMエージェントとは
    • 🏷GPTや他のLLMに関する論文の重要性
    • 🏷オープンソースツールとアプリケーションの役割
    • 🏷最新の研究動向と実装事例
    • 🏷LLMエージェントの応用分野
    • 🏷セキュリティとプライバシーの考慮事項
    • 🏷将来の展望と課題
  • 🖍考察
  • 📚参考文献
    • 📖利用された参考文献
    • 📖未使用の参考文献
    • 📊ドメイン統計